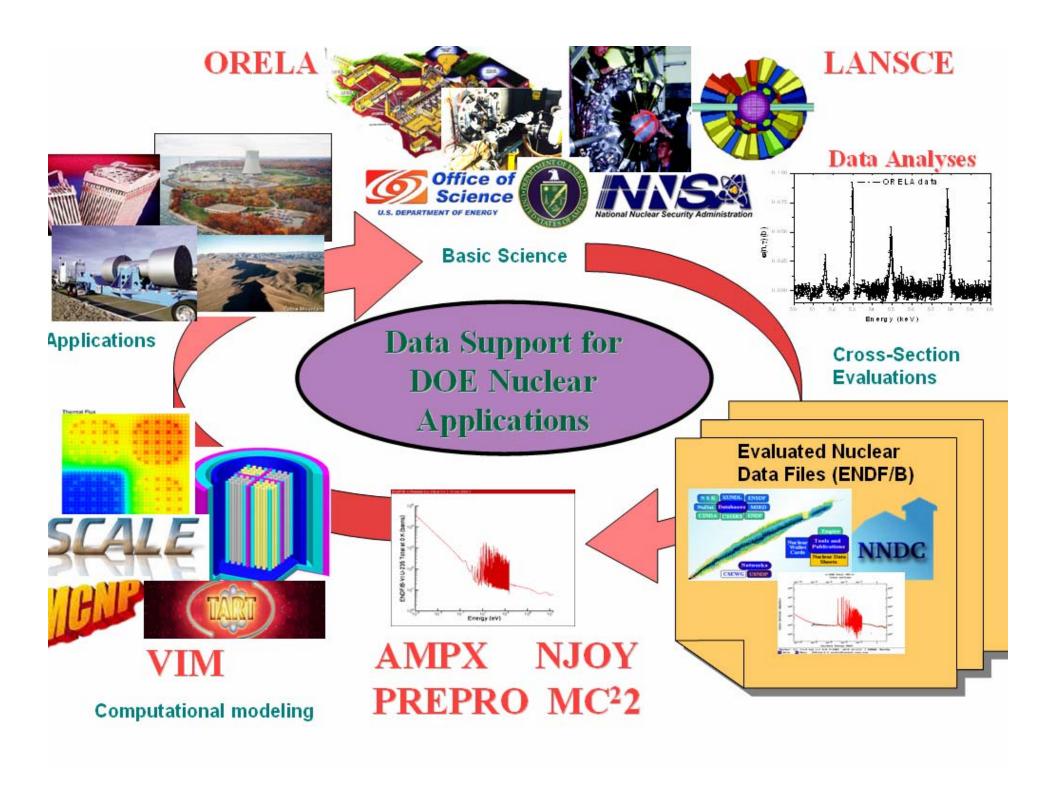


### Advanced Neutronics Simulation Development and Directions


Dr. Jess C. Gehin Leader, Reactor Analysis Group

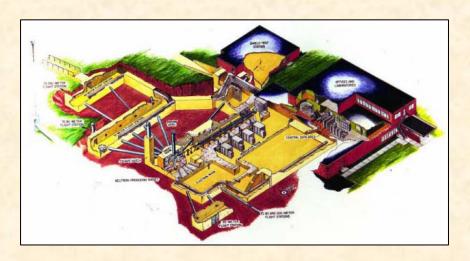
Workshop on Advanced Simulations: A Critical Tool for Future Nuclear Fuel Cycles
Lawrence Livermore National Laboratory
December 14-16, 2005

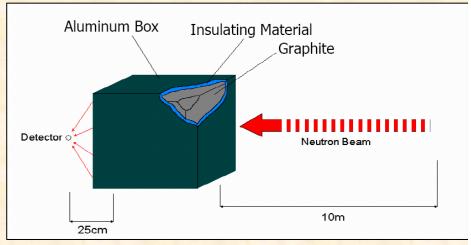
OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

## Topics

- Nuclear Data
- Energy Treatment
- S/U Methods
- Optimization
- Nuclear Technology End Station Concept



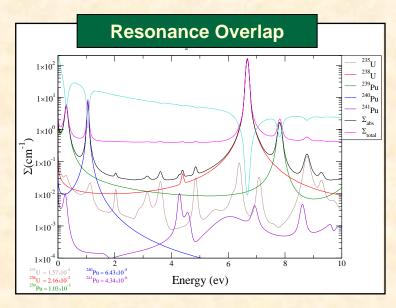

### Development and Validation of Temperature Dependent Thermal Neutron Scattering Laws (NERI Project 01-140)

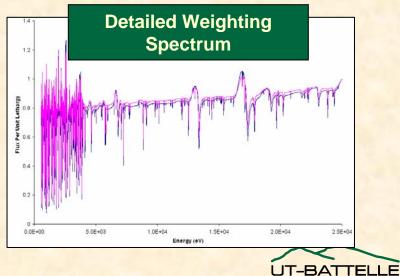

- Collaborative Project with NCSU (Ayman Hawari) and Institute Balseiro, Argentina
- Update models and models' parameters by introducing new developments in thermalization theory and condensed matter physics
  - Use atomistic simulations to compute phonon distribution.
  - Use photon distribution in GASKET/LEAPR to compute updated scattering kernels (C, Be, BeO, ZrH, ThH, (CH<sub>2</sub>)<sub>n</sub>, H<sub>2</sub>O
- Apply updated thermal scattering libraries to benchmark models to determine improvement.
- In the case of graphite, perform a benchmark experiment by observing neutron slowing down as a function of temperatures equal to or greater than room temperature
- Understand the implications of the obtained results on the ability to accurately determine the operating and safety Characteristics of a given reactor design



## ORELA Graphite Experiment

- An experiment is currently being setup at ORELA to provide data for validation of the scattering kernels.
- A graphite pile is being placed in a furnace with Pu fission chambers and Li detectors to measure integral reaction rate vs time.
- Pulsed slowing down technique
  - Graphite pile (70-cm cubed) is set up in a furnace10 m from neutron source.
  - Measure integral reactor rate in detector as a function of time.



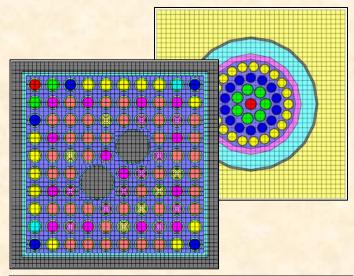


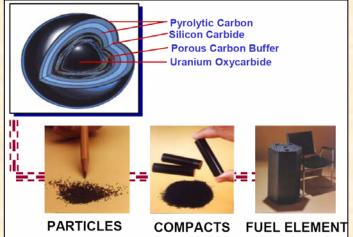

## Improved Energy treatment in deterministic codes

- 1-D CENTRM Code introduced in SCALE 5.0
  - Continuous energy, pointwise library (~30,000 Energy Points)
  - Solve transport equation using Discrete Ordinates
     Method
  - Solve detailed slowing down problem to obtain multi-group cross sections for Monte Carlo/Lattice Physics Codes






## Detailed Energy Treatment - 2-D

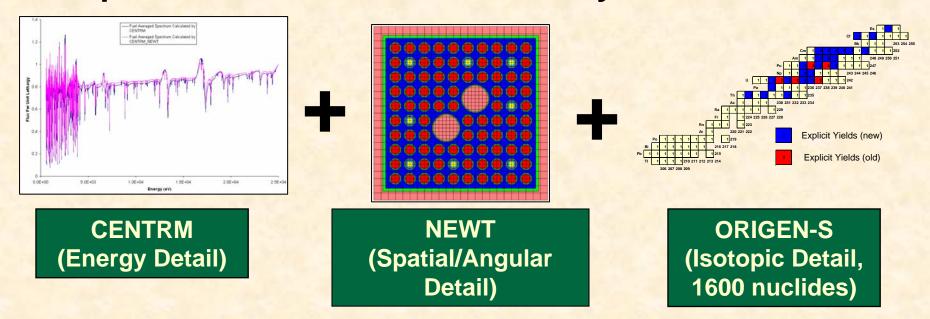

 1-D approximation cannot easily capture non-infinite lattices.

### GEMINEWTRN

- Combine 2-D NEWT Extended
   Step Characteristics method with
   CENTRM Energy Detail
- Idea for benchmarking more approximate methods
- Joint project with Purdue Univ.

#### **Heterogeneous Designs**





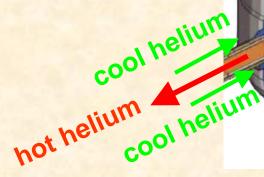





### TRITON Combines Rigorous Methods

- CENTRM: 1-D continuous energy resonance processing
- ORIGEN-S: detailed isotopic compositions
- NEWT: 2-D flexible mesh geometry discrete ordinates transport
- Implemented in modular SCALE system




JOINT INL/ORNL LDRDs: FULLY-COUPLED NUCLEAR REACTOR SIMULATION

## **INL LDRD**

3-D, transient, compressible, turbulent, non-linear PDE

Conductive-convective-radiative Heat Transfer

**Fluid Dynamics** 



ORNL LDRD

6-D, transient linear integral-PDE

**Neutron Transport** 

**Gamma Transport** 

10 orders of magnitude in energy

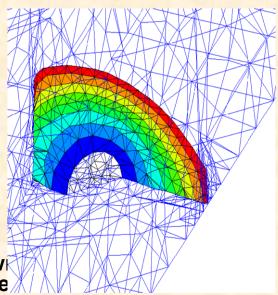
5 orders of magnitude in space

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY



### The ORNL LDRD: A HIGH-FIDELITY SIMULATION PACKAGE

- Develop a high-fidelity radiation transport solver
  - Specifically designed for tera-scale computing
  - High-fidelity in both space and energy (based on centrm) approach)
- Create the computer science infrastructure
  - For code efficiency & interoperability in terascale machines
  - Leverage existing software:
    - DOE's SciDAC software
    - ORNL's SCALE nuclear analysis code system
  - Teaming with ORNL computer science expertise
- Demonstrate the capability
  - Develop two visual demonstrations of the software
    - Independent radiation transport simulation
- Coupled-physics simulation of a transient Oak RIDGE NATIONAL LABORATORY


U. S. DEPARTMENT OF ENERGY



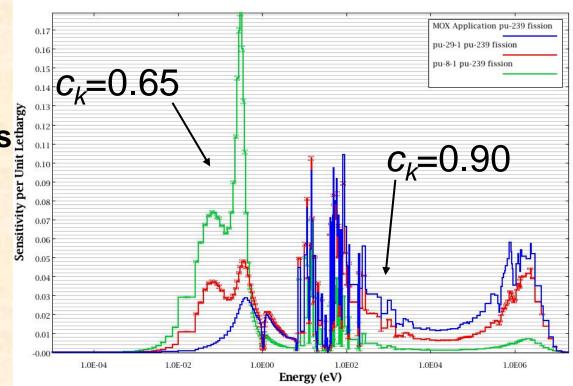
## All built on a comprehensive COMPUTER SCIENCE INFRASTRUCTURE

- Develop the setup geometry and meshing tools
  - Efficient parametric geometric modeling and processing tools
  - Advanced terascale grid generation and improvement techniques
  - Adaptive parallel hybrid mesh generation
    - Flexible mix of structured and unstructured mesh
    - AMR within the unified computational basis
- Leverage existing SciDAC technology
  - Common component architecture
    - Extensibility of each physics module
    - Interoperability of modules across platforms
  - Meshing tools and techniques from TSTT
- Domain decomposition and mesh ordering
  - Optimized ordering to take advantage of the a priori knowledge computational wave fronts in the radiation transport solve.





## Validation, Experiments, and S/U


- Good experiment data for code validation is hard to find for advanced reactor systems, a couple of key activities:
  - International Criticality Safety
     Benchmark Evaluation Project
  - International Reactor Physics Benchmark Experiments
- S/U tools can be used to determine:
  - What is important, which cross sections to measure
  - Fundamental assessment of uncertainties from basic data to support margins
  - Determine the applicability of experiments
  - Can be used to perform cross section adjustments to improve accuracy



# Example: Applicability of Experiments

- Sensitivity data computed for experiments and applications for each reaction of each nuclide on energydependent basis.
- Integral indices assess degree of similarity between systems.
- Index range:
  - -0.0: no similarity
  - -1.0: identical

 $^{239}$ Pu Fission Sensitivity Profiles: Sensitivity of  $k_{eff}$  to cross-section data on an energy-dependent basis



OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY



## Optimization for Design

- Current example is fuel loading
- With multi-physics, multi-component can apply optimization methods for automated design
  - Eliminate current iteration performed between particular areas of expertise
  - Computing intensive: requires multiple calculations
  - Optimize on economics, reliability, proliferation resistance
- Some general-purpose tools already exist (e.g. DAKOTA)



## Nuclear Technology End station Concept

- 1. Approach for National Leadership Computing Facility Complete simulation tool set on a HPC
- 2. Concept for reactor design and analysis:

### **RADIATION TRANSPORT**

Neutron Photon

### **CONTINUUM MECHANICS**

Multi-phase CFD
Heat transfer
Chemically reactive flow
Fluid-structure dynamics

### 3. Add components for broader NS&T community

### **RADIATION TRANSPORT**

Charged-Particle
Spallation Physics

### **CONTINUUM MECHANICS**

Elasto-plastic dynamics Impact dynamics Radiation damage in materials

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

